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Hypotheses derived from models can be tested in an empirical study: If the model reliably fails
to predict behavior, it can be dismissed or modified. Models can also be evaluated before data
are collected: More useful models have a high level of empirical content (Popper, 1934), i.e.,
they make precise predictions (degree of precision) for many events (level of universality). I
apply these criteria to reflect on some critical aspects of Kirsch’s (2019) unifying computational
model of decision making.
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Alexandra Kirsch (2019) submitted her article on the uni-
fying computational model of decision making. Computa-
tional models force researchers to specify the variables of a
theory and the functional relation between variables and pre-
dicted behavior. Models with such a high level of specifica-
tion have many advantages over typically less well specified
non-formalized “verbal” models (Farrell & Lewandowsky,
2010) that are more common in psychology (Fiske, 2004).
They can be used in “thought experiments [that are] pros-
thetically regulated by computers” (Dennet, 1981, p. 117)1 to
(e.g.) derive hypotheses that can be tested empirically. A uni-
fying model can integrate complementing theories, make re-
lations between empirical phenomena visible (Fiedler, 2004;
Van Lange, Kruglanksi, & Higgins, 2012), and spark new
research. The model by Kirsch (2019) has these qualities of
computational models and I agree with Ross (in press) that
its value will be finally measured by the extent in which it
initiates research. Nonetheless, part of the role of a reviewer
of an article is to evaluate its content and I had some concerns
about the model, arguing from a Popperian perspective that
may be useful to consider or debate (Ross, in press) when
evaluating and developing models.

Criteria for evaluating models before and after data are
collected

Experiments and correlational studies in the lab and in the
field allow testing whether hypotheses derived from mod-
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els2 are in line with the predicted behavior. If studies allow
for strong inferences (Platt, 1964; Roberts & Pashler, 2000)
and a model reliably fails to make correct predictions, the
model either needs to be adjusted or dismissed. If the model
makes correct predictions only for some participants or only
under some conditions, the generality of the model needs
to be re-considered. If the model makes risky predictions
that, in principle, could turn out to be false, but nonetheless
predicts behavior accurately, its degree of corroboration in-
creases (Popper, 1934).

Generally less common, at least in psychology, is the use
of criteria for evaluating theories before data are collected
(i.e., a priori) such as the empirical content of a theory (Pop-
per, 1934). A theory has a high level of empirical content if
it achieves a high level of universality and a high degree of
precision.

A theory is more universal if it applies to more observable
events. More formally, the level of universality of a theory
can be assessed by the extent to which the “if” statements in
a hypothesis restrict the number of events the theory can be
applied. For example, the hypothesis “if a child is frustrated,
then it reacts aggressively” cannot be applied to predict be-
havior of frustrated adults. As another example, the theory
of cognitive dissonance (Festinger, 1957) cannot be applied
to predict (lack of) attitude change in cases where cognition
and behavior is coherent (Higgins, 2004).

A theory is more precise if the “then” statements in a hy-
pothesis are more restrictive in the sense that most behavior
that could be potentially observed in a study contradicts the
theory. More formally, the degree of precision of a theory
can be quantified by the extent of prediction space that con-
tradicts the theory (see Figure 1, Roberts & Pashler, 2000).
In the example of the relation between frustration and ag-

1I thank the reviewer who made me aware of this work.
2I use the terms theory and model interchangeably but see, in

contrast, Thagard (2012, Chapter 1) for a differentiation.
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gression, the theory can only be falsified by a negative or
no relation between the two variables but is consistent with
any positive relation whatsoever between them. A more pre-
cise theory, however, could predict a linear relation between
both variables and thus thereby define the exact functional
relation between the extent of frustration and aggressive be-
havior. Similarly, a formal implementation of cognitive dis-
sonance (Shultz & Lepper, 1996) might be more specific re-
garding the functional relation between dissonance and atti-
tude change.3

The degree of precision is closely related to model flexi-
bility (Pitt & Myung, 2000; Roberts & Pashler, 2000): That
is, models that predict almost any behavior that could be ob-
served are overly flexible and thus lack precision. Statistical
methods have been developed to punish for model flexibil-
ity when evaluating the fit of a model (Myung & Pitt, 1997;
Myung, Navarro, & Pitt, 2006; Pitt, Myung, & Zhang, 2002).
Model flexibility may also be restricted a priori (e.g.) by us-
ing priors on model-parameters (Vanpaemel & Lee, 2012)
and thus priors on predicted behavior.

The method of computational modeling may naturally
help to foster better reasoning about models in general (Far-
rell & Lewandowsky, 2010; Marewski & Olsson, 2009) and
also in accordance with criteria of universality and precision
(cf. Klein, 2014). A computational model typically con-
sists of functions written in some programming language that
have input arguments (i.e., variables of the if-statement in
the hypothesis). In the body of the functions, a computa-
tional model defines the functional structure by which the
arguments are combined to produce the predicted behavior
(i.e., variables of the then-statement in the hypothesis). The
flexibility of a computational model and thus its degree of
precision can be easily evaluated before data are collected
by plotting all model predictions that are consistent with the
theory in the prediction space.

Models with a high level of empirical content are a pri-
ori more useful in practice: They can be applied in many
situations (criterion of universality) and they make more in-
formative predictions (criterion of precision). Models with a
high level of empirical content are also more useful for the-
ory development: They can be tested and thereby falsified
in many situations. They also make more specific and thus
more risky predictions that can be falsified more easily. In-
correct models can therefore be detected and dismissed (or
modified) more easily if they have a high level of empirical
content.

Some critical aspects of Kirsch’s (2019) unifying
computational model of decision making

The unifying computational model of decision making
(Kirsch, 2019) defines all the necessary consecutive opera-
tions in the decision process in reasoning tasks such as get-
ting all the alternatives and all the cues from memory or the

environment, ordering and aggregating cues, stopping ag-
gregation based on some criterion of acceptability, deciding
between options or adding more options, and so on. This
rather loose framework can be filled with if/then statements
(Kirsch, 2019, Figure 2, p. 3) and computations for each
operation to model rule-based decision making. Parameters
in the model can instantiate specific computations such as
computational steps of heuristics from the adaptive toolbox
(Gigerenzer & Todd, 1999).

This “generalized model” (Kirsch, 2019, p. 2) can repro-
duce heuristics and thus should be able to predict human de-
cision making well. The model can also instantiate other al-
gorithms from (e.g.) artificial intelligence that lead to good
performance in a decision task but are not necessarily plausi-
ble candidates for modeling human decision making. Thus,
the model may be used for predicting human behavior (i.e.,
descriptive purpose) but also for solving decision tasks effi-
ciently (i.e., prescriptive purpose) as also demonstrated in a
case study in the article.

The unifying computational model of decision making
achieves a high level of universality. In the current version,
its application is not restricted to specific groups of persons.
The decision models that can be instantiated in the gener-
alized model could also stem from diverse domains such as
probabilistic reasoning (e.g., Gigerenzer & Goldstein, 1996),
risky choice (e.g., Kahneman & Tversky, 1979), or preferen-
tial choice (e.g., Krajbich, Armel, & Rangel, 2010). Thus,
the application of the model is also not restricted to a specific
domain.

The unifying computational model of decision making,
however, does not (in my view) achieve a high degree of pre-
cision in its current version which might, of course, change
in an updated version. For example, the article focuses on
the operation of information aggregation for demonstrating
its generality. For aggregation, the “model allows for any
[emphasis added] aggregation mechanism in the context of
a full, iterative decision procedure” (Kirsch, 2019, p. 2). If
any aggregation mechanism is possible, it is unclear how the
model decides which mechanism to choose for a specific ap-
plication. This crucial aspect of the model is not very well
specified since “[t]he parameters, however, still have to be
found for each application in turn” (Kirsch, 2019, p. 2). This
is especially worrisome because some of the models listed
in the article that can be instantiated in the unifying com-
putational model of decision making are competitor models,
i.e., they can make differing predictions (Glöckner, Hilbig,
& Jekel, 2014; Rieskamp & Otto, 2006). After all, if it were
the case that every prediction was possible, then the model
could not be falsified and thus the model would not contain
any empirical content.

3See also Glöckner and Betsch (2011) for a recent application of
these criteria for evaluating models in judgment and decision mak-
ing.
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